Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antibiotics (Basel) ; 13(1)2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38275318

RESUMO

The emergence of multi-drug resistant pathogens is a major public health problem, leading us to rethink and innovate our bacterial control strategies. Here, we explore the antibiofilm and antivirulence activities of nineteen 6-polyaminosterol derivatives (squalamine-based), presenting a modulation of their polyamine side chain on four major pathogens, i.e., carbapenem-resistant A. baumannii (CRAB) and P. aeruginosa (CRPA), methicillin-resistant S. aureus (MRSA), and vancomycin-resistant E. faecium (VRE) strains. We screened the effect of these derivatives on biofilm formation and eradication. Derivatives 4e (for CRAB, VRE, and MRSA) and 4f (for all the strains) were the most potent ones and displayed activities as good as those of conventional antibiotics. We also identified 11 compounds able to decrease by more than 40% the production of pyocyanin, a major virulence factor of P. aeruginosa. We demonstrated that 4f treatment acts against bacterial infections in Galleria mellonella and significantly prolonged larvae survival (from 50% to 80%) after 24 h of CRAB, VRE, and MRSA infections. As shown by proteomic studies, 4f triggered distinct cellular responses depending on the bacterial species but essentially linked to cell envelope. Its interesting antibiofilm and antivirulence properties make it a promising a candidate for use in therapeutics.

2.
Front Microbiol ; 12: 785161, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35095797

RESUMO

Acinetobacter baumannii has emerged as one of the most problematic bacterial pathogens responsible for hospital-acquired and community infections worldwide. Besides its high capacity to acquire antibiotic resistance mechanisms, it also presents high adhesion abilities on inert and living surfaces leading to biofilm development. This lifestyle confers additional protection against various treatments and allows it to persist for long periods in various hospital niches. Due to their remarkable antimicrobial tolerance, A. baumannii biofilms are difficult to control and ultimately eradicate. Further insights into the mechanism of biofilm development will help to overcome this challenge and to develop novel antibiofilm strategies. To unravel critical determinants of this sessile lifestyle, the proteomic profiles of two A. baumannii strains (ATTC17978 and SDF) grown in planktonic stationary phase or in mature solid-liquid (S-L) biofilm were compared using a semiquantitative proteomic study. Of interest, among the 69 common proteins determinants accumulated in the two strains at the S-L interface, we sorted out the MacAB-TolC system. This tripartite efflux pump played a role in A. baumannii biofilm formation as demonstrated by using ΔmacAB-tolC deletion mutant. Complementary approaches allowed us to get an overview of the impact of macAB-tolC deletion in A. baumannii physiology. Indeed, this efflux pump appeared to be involved in the envelope stress response occurring in mature biofilm. It contributes to maintain wild type (WT) membrane rigidity and provides tolerance to high osmolarity conditions. In addition, this system is probably involved in the maintenance of iron and sulfur homeostasis. MacAB-TolC might help this pathogen face and adapt to deleterious conditions occurring in mature biofilms. Increasing our knowledge of A. baumannii biofilm formation will undoubtedly help us develop new therapeutic strategies to tackle this emerging threat to human health.

3.
Biochim Biophys Acta Biomembr ; 1863(1): 183482, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33002450

RESUMO

BACKGROUND: Pseudomonas aeruginosa is a bacterium able to induce serious pulmonary infections in cystic fibrosis (CF) patients. This bacterium is very often antibiotic resistant, partly because of its membrane impermeability, which is linked to the membrane lipid composition. This work aims to study the membrane phospholipids of P. aeruginosa grown in CF sputum-like media. METHODS: Three media were used: Mueller Hilton broth (MHB), synthetic cystic fibrosis medium (SCFM) and 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) complemented SCFM (SCFM-PC). Lipids were extracted and LC-MS/MS analyses were performed. Growth curves, atomic force microscopy images and minimal inhibitory concentration determination were performed in order to compare the growth and potentially link lipid modifications to antibiotic resistance. RESULTS: Semi-quantification showed phospholipid quantity variation depending on the growth medium. Phosphatidylcholines were detected in traces in SCFM. MS/MS experiments showed an increase of phospholipids derived from DOPC in SCFM-PC. We observed no influence of the medium on the bacterial growth and a minor influence on the bacterial shape. MIC values were generally higher in SCFM and SCFM-PC than in MHB. CONCLUSIONS: We defined a CF sputum-like media which can be used for the membrane lipid extraction of P. aeruginosa. We also showed that the growth medium does have an influence on its membrane lipid composition and antibiotic resistance, especially for SCFM-PC in which P. aeruginosa uses DOPC, in order to make its own membrane. GENERAL SIGNIFICANCE: Our results show that considerable caution must be taken when choosing a medium for lipid identification and antibiotic testing -especially for phospholipids-enriched media.


Assuntos
Membrana Celular/metabolismo , Fibrose Cística/microbiologia , Fosfolipídeos/metabolismo , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/crescimento & desenvolvimento , Escarro/microbiologia , Meios de Cultura , Fibrose Cística/metabolismo , Humanos , Infecções por Pseudomonas/metabolismo
4.
Mater Sci Eng C Mater Biol Appl ; 106: 110130, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31753364

RESUMO

Chronic infection is a major cause of delayed wound-healing. It is recognized to be associated with infectious bacterial communities called biofilms. Currently used conventional antibiotics alone often reveal themselves ineffective, since they do not specifically target the wound biofilm. Here, we report a new conceptual tool aimed at overcoming this drawback: an antibiofilm drug delivery system targeting the bacterial biofilm as a whole, by inhibiting its formation and/or disrupting it once it is formed. The system consists of a micro/nanostructured poly(butylene-succinate-co-adipate) (PBSA)-based asymmetric membrane (AM) with controlled porosity. By the incorporation of hydrophilic porogen agents, polyvinylpyrrolidone (PVP) and polyethylene glycol (PEG), we were able to obtain AMs with high levels of porosity, exhibiting interconnections between pores. The PBSA-PEG membrane presented a dense upper layer with pores small enough to block bacteria penetration. Upon using such porogen agents, under dry and wet conditions, membrane's integrity and mechanical properties were maintained. Using bovine serum albumin (BSA) as a model protein, we demonstrated that protein loading and release from PBSA membranes were affected by the membrane structure (porosity) and the presence of residual porogen. Furthermore, the release curve profile consisted of a fast initial slope followed by a second slow phase approaching a plateau within 24 h. This can be highly beneficial for the promotion of wound healing. Cross-sectional confocal laser scanning microscopy (CLSM) images revealed a heterogeneous distribution of fluorescein isothiocyanate (FITC) labeled BSA throughout the entire membrane. PBSA membranes were loaded with dispersin B (DB), a specific antibiofilm matrix enzyme. Studies using a Staphylococcus epidermidis model, indicate significant efficiency in both inhibiting or dispersing preformed biofilm (up to 80 % eradication). The asymmetric PBSA membrane prepared with the PVP porogen (PBSA-PVP) displayed highest antibiofilm activity. Moreover, in vitro cytotoxicity assays using HaCaT and reconstructed human epidermis (RHE) models revealed that unloaded and DB-loaded PBSA-PVP membranes had excellent biocompatibility suitable for wound dressing applications.


Assuntos
Membranas Artificiais , Soroalbumina Bovina/química , Cicatrização , Adipatos/química , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Bandagens , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Biofilmes/efeitos dos fármacos , Bovinos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/metabolismo , Humanos , Nanoestruturas/química , Polietilenoglicóis/química , Porosidade , Povidona/química , Staphylococcus epidermidis/fisiologia , Succinatos/química , Cicatrização/efeitos dos fármacos
5.
Anal Bioanal Chem ; 411(30): 8123-8131, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31754767

RESUMO

Collision cross section (CCS) values are descriptors of the 3D structure of ions which can be determined by ion mobility spectrometry (IMS). Currently, most lipidomic studies involving CCS value determination concern eukaryote samples (e.g. human, bovine) and to a lower extent prokaryote samples (e.g. bacteria). Here, we report CCS values obtained from traveling wave ion mobility spectrometry (TWCCSN2) measurements from the bacterial membrane of Pseudomonas aeruginosa-a bacterium ranked as priority 1 for the R&D of new antibiotics by the World Health Organization. In order to cover the lack of reference compounds which could cover the m/z and CCS ranges of the membrane lipids of P. aeruginosa, three calibrants (polyalanine, dextran and phospholipids) were used for the TWCCSN2 calibration. A shift from the published lipid CCS values was systematically observed (ΔCCS% up to 9%); thus, we proposed a CCS correction strategy. This correction strategy allowed a reduction in the shift (ΔCCS%) between our measurements and published values to less than 2%. This correction was then applied to determine the CCS values of Pseudomonas aeruginosa lipids which have not been published yet. As a result, 32 TWCCSN2 values for [M+H]+ ions and 24 TWCCSN2 values for [M-H]- ions were obtained for four classes of phospholipids (phosphatidylethanolamines (PE), phosphatidylcholines (PC), phosphatidylglycerols (PG) and diphosphatidylglycerols-known as cardiolipins (CL)). Graphical abstract.


Assuntos
Cardiolipinas/análise , Espectrometria de Mobilidade Iônica/métodos , Espectrometria de Massas/métodos , Fosfolipídeos/análise , Calibragem
6.
PLoS One ; 7(9): e46402, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23029510

RESUMO

Campylobacter jejuni is responsible for the major foodborne bacterial enteritis in humans. In contradiction with its fastidious growth requirements, this microaerobic pathogen can survive in aerobic food environments, suggesting that it must employ a variety of protection mechanisms to resist oxidative stress. For the first time, C. jejuni 81-176 inner and outer membrane subproteomes were analyzed separately using two-dimensional protein electrophoresis (2-DE) of oxygen-acclimated cells and microaerobically grown cells. LC-MS/MS analyses successfully identified 42 and 25 spots which exhibited a significantly altered abundance in the IMP-enriched fraction and in the OMP-enriched fraction, respectively, in response to oxidative conditions. These spots corresponded to 38 membrane proteins that could be grouped into different functional classes: (i) transporters, (ii) chaperones, (iii) fatty acid metabolism, (iv) adhesion/virulence and (v) other metabolisms. Some of these proteins were up-regulated at the transcriptional level in oxygen-acclimated cells as confirmed by qRT-PCR. Downstream analyses revealed that adhesion of C. jejuni to inert surfaces and swarming motility were enhanced in oxygen-acclimated cells or paraquat-stressed cells, which could be explained by the higher abundance of membrane proteins involved in adhesion and biofilm formation. The virulence factor CadF, over-expressed in the outer membrane of oxygen-acclimated cells, contributes to the complex process of C. jejuni adhesion to inert surfaces as revealed by a reduction in the capability of C. jejuni 81-176 ΔCadF cells compared to the isogenic strain.Taken together, these data demonstrate that oxygen-enriched conditions promote the over-expression of membrane proteins involved in both the biofilm initiation and virulence of C. jejuni.


Assuntos
Aderência Bacteriana/fisiologia , Proteínas da Membrana Bacteriana Externa/genética , Campylobacter jejuni/genética , Campylobacter jejuni/metabolismo , Proteínas de Transporte/genética , Regulação Bacteriana da Expressão Gênica , Oxigênio/farmacologia , Aerobiose , Anaerobiose , Aderência Bacteriana/efeitos dos fármacos , Proteínas da Membrana Bacteriana Externa/metabolismo , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Campylobacter jejuni/efeitos dos fármacos , Proteínas de Transporte/metabolismo , Cromatografia Líquida , Eletroforese em Gel Bidimensional , Ácidos Graxos/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Estresse Oxidativo , Paraquat/farmacologia , Proteoma/genética , Proteoma/metabolismo , Espectrometria de Massas em Tandem
7.
Plant Signal Behav ; 7(1): 59-61, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22301970

RESUMO

Pectin methylesterase (PME) catalyses the de-methylesterification of pectin in plant cell walls during cell elongation. (1) Pectins are mainly composed of α(1, 4)-D-galacturonosyl acid units that are synthesised in a methylesterified form in the Golgi apparatus to prevent any interaction with Ca2+ ions during their intracellular transport. (2) The highly methylesterified pectins are then secreted into the apoplasm (3) and subsequently de-methylesterified in muro by PMEs. This can either induce the formation of pectin gels through the Ca2+ crosslinking of neighbouring non-methylesterified chains or create substrates for pectin-degrading enzymes such as polygalacturonases and pectate lyases for the initiation of cell wall loosening. (4) PMEs belong to a large multigene family. Sixty-six PME-related genes are predicted in the Arabidopsis genome. (1) Among them, we have recently shown that AtPME3 (At3g14310), a major basic PME isoform in A. thaliana, is ubiquitously expressed in vascular tissues and play a role in adventitious rooting. (5) In flax (Linum usitatissimum), three genes encoding PMEs have been sequenced so far, including LuPME3, the orthologue of AtPME3. Analysis of the LuPME3 isoform brings new insights into the processing of these proteins.


Assuntos
Hidrolases de Éster Carboxílico/metabolismo , Linho/enzimologia , Hidrolases de Éster Carboxílico/genética , Eletroforese em Gel de Poliacrilamida , Proteólise
8.
Ann Bot ; 104(7): 1363-72, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19815572

RESUMO

BACKGROUND AND AIMS: In hypocotyls of flax (Linum usitatissimum) cadmium-induced reorientation of growth (i.e. an increase in expansion and a decrease in elongation) coincides with marked changes in the methylesterification and cross-linking of homogalacturonans within various cell-wall (CW) domains. The aim of the present study was to examine the involvement of pectin methylesterase (PME) and peroxidase (PER) in this cadmium-induced CW remodelling. METHODS: CW proteins were extracted from hypocotyls of 10- and 18-d-old flax that had been treated or not treated with 0.5 mm Cd(NO(3))(2). PME and PER expression within these extracts was detected by LC/MS, by isoelectric focusing and enzyme activity assays. Transcript expression by RT-PCR of known flax PME and PER genes was also measured in corresponding samples. KEY RESULTS: In cadmium-treated seedlings, PME activity increased as compared with controls, particularly at day 10. The increased activity of PME was accompanied by increased abundance of both a basic protein isoform (B2) and a particular transcript (Lupme5). In contrast, induction of PER activity by cadmium was highest at day 18. Among the four reported PER genes, Flxper1 and 3 increased in abundance in the presence of cadmium at day 18. CONCLUSIONS: The temporal regulation of Lupme and Flxper genes and of their respective enzyme activities fits the previously reported cadmium-induced structural changes of homogalacturonans within the CWs. After PME-catalysed de-esterification of homogalacturonans, their cross-linking would depend on the activity of PERs interacting with calcium-dimerized blocks and reinforce the cell cohesion during the cadmium-induced swelling.


Assuntos
Hidrolases de Éster Carboxílico/metabolismo , Parede Celular/enzimologia , Linho/enzimologia , Pectinas/metabolismo , Peroxidase/metabolismo , Cádmio , Hidrolases de Éster Carboxílico/genética , Linho/genética , Expressão Gênica , Hipocótilo/fisiologia , Isoenzimas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...